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Abstract

Residual dipolar couplings provide significant structural information for proteins in the solution state, which makes
them attractive for the rapid determination of protein folds. Unfortunately, dipolar couplings contain inherent
structural ambiguities which make them difficult to use in the absence of additional information. In this paper, we
describe an approach to the construction of protein backbone folds using experimental dipolar couplings based on a
bounded tree search through a structural database. We filter out false positives via an overlap similarity measure that
insists that protein fragments assigned to overlapping regions of the sequence must have self-consistent structures.
This allows us to determine a backbone fold (including the correct Ca-Cf bond orientations) using only residual
dipolar coupling data obtained from one ordering medium. We demonstrate the applicability of the method using

experimental data for ubiquitin.

Introduction

There exists a need for methods that would allow the
more rapid determination of protein structure using
NMR than can currently be attained, both from the
viewpoint of traditional structural biology, as well as
from the ‘proteomics’ and ‘structural genomics’ per-
spective. One of the principle rate-limiting steps in
NMR structure determination is the sequential assign-
ment of sidechain proton resonances and the assign-
ment of NOESY crosspeaks to particular sidechain
resonances. These steps are considerably more diffi-
cult and time-consuming than the sequential assign-
ment of chemical shifts along the peptide backbone,
for which relatively robust automated methods already
exist (Moseley and Montelione, 1999). Therefore, it
would be desirable to have a method for obtaining
reliable structural information based on the smallest
possible additional data collection beyond that needed
for the backbone resonance assignments.

*To whom correspondence should be addressed. E-mail:
ronlevy @lutece.rutgers.edu

Residual dipolar couplings are of particular interest
for this purpose in that they require relatively little data
collection time and provide considerable structural in-
formation through their dependence on the orientation
of an internuclear vector relative to an order frame
(Prestegard et al., 1999). The development of a variety
of orienting media (such as lipid bicelles and filamen-
tous phage) (Tjandra and Bax, 1997; Hansen et al.,
1998; Clore et al., 1998) have increased the practi-
cality of such measurements in recent years, and the
use of residual dipolar couplings as a supplement to
NOE:s and scalar couplings in the refinement of high-
resolution NMR solution structures is becoming more
common (Tjandra, 1999).

Previous approaches to protein structure determi-
nation using residual dipolar couplings in the absence
of NOEs have included fold recognition (Annila et al.,
1999; Meiler et al., 2000), the searching of a data-
base of protein fragments (Delaglio et al., 2000) to
determine the fold, protein structural motif recognition
(Andrec et al., 2001), and the direct fitting of pep-
tide group orientations (Hus et al., 2001). All of these
methods are limited to different degrees by the ori-
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entational ambiguities arising from the many-to-one
relationship between internuclear vector orientation
and dipolar coupling. One way to reduce the impact
of this ambiguity is by the use of dipolar couplings
measured using at least two ordering media with dif-
ferent order tensor orientations (Ramirez and Bax,
1998; Al-Hashimi et al., 2000; Hus et al., 2001).
Alternatively, one could accept a certain number of
false positives and use a post-processing procedure to
distinguish them from the true positives. We describe
here an alternative method for the construction of a
protein backbone fold using a protein fragment data-
base which is similar in spirit to previous approaches
(Delaglio et al., 2000; Bowers et al., 2000), but
which makes use of a different kind of post-processing
procedure.

Our approach differs from previous methods in that
we filter out false positives by insisting that protein
fragments assigned to overlapping regions of the se-
quence must have self-consistent structures. In brief,
for each Ny,-residue window of dipolar coupling data,
we choose 15 protein fragments which best satisfy the
residual dipolar couplings. Due to orientational am-
biguities, these 15 hits in general contain both true
positives (fragments which are similar in structure
to that which generated the data) and false positives
(fragments which are significantly different in struc-
ture from that which generated the data). We filter
the hits by insisting that overlapping fragments be
structurally similar: e.g. a selected hit for data win-
dow 1 (residues 1 through 7 with Ny, = 7) must be
structurally similar to the selected hit for data win-
dow 2 (residues 2 through 8) over the overlapping
region from residues 2 through 7. Finding the best
fragment for each data window leads to a combina-
torial optimization problem that grows exponentially
in the number of windows. However, we show that
a bounded tree search algorithm allows the efficient
search for optimal selections over a block of up to
twenty windows, and that this is sufficient to define
the backbone atoms of ubiquitin to a Ca. RMSD of
2.8 A after refinement with respect to the dipolar
coupling data from only one orienting medium. Fur-
thermore, the sidechain Ca-Cf bond orientations are
also correctly defined. This will make it much easier to
construct all-atom models using the newest generation
of sidechain conformation prediction algorithms.

Theory and methods

A residual dipolar coupling associated with a given
internuclear vector is related to the orientation of that
vector relative to an order tensor and is given by

D = D,[(3cos?0 — 1) +3/2 R cos 2¢ sin® 0], (1)

where D, is a constant which depends on the inter-
nuclear distance and the gyromagnetic ratios of the
spins involved, R (0 < R < 2/3) is a measure of
the asymmetry of the order tensor, and 6 and ¢ are
spherical angles which relate the internuclear vector
to the principle axis system (PAS) of the order tensor
(Prestegard et al., 1999). Alternatively, one can also
rewrite Equation 1 in the form

Dxx Dxy Dx X
Dyy Dyy Dy, Yyl ()
Dy, Dyz D, z

D=(xyz)

where Dj; are the elements of a symmetric and trace-
less matrix proportional to the Saupe order tensor
(Saupe, 1968; Losonczi et al., 1999) in an arbitrary
molecular frame defined by the direction cosines X, Y,
and z. It is clear from Equation 2 that the inversion
of any internuclear vector through the origin leaves
the dipolar coupling unchanged. Also, it is clear that
the relationship between (0, ¢) or (x, y, z) and D is
many-to-one, since there exist manifolds of (6, ¢) or
(x, y, z) points which give rise to the same dipolar
coupling, e.g. circles of constant 8 in the case of R
= 0. In the absence of additional data, for example
from dipolar couplings obtained using different order-
ing media with different PAS orientations (Ramirez
and Bax, 1998; Al-Hashimi et al., 2000), these de-
generacies lead to orientational ambiguities which can
give rise to false positive hits when searching a data-
base or to structural ambiguity when constructing a
structure de novo (Hus et al., 2001).

Since Equation 2 is linear in the tensor elements
Djj, it is possible to solve for the optimal Dj;’s which
maximize the agreement between a set of bond vector
orientations and the dipolar coupling data using a com-
putationally efficient linear least squares procedure
(Losonczi et al., 1999). It is therefore straightfor-
ward to fit an order tensor for each Ny, -residue stretch
of dipolar couplings to all fragments in a protein
fragment database, back-calculate the best-fit dipolar
couplings, and calculate a ¥ ? statistic

Xz = Z(Dcalc,i - Dobs,i)za (3)
i



where Dealc, i and Dops, i are the back-calculated best-
fit and experimental residual dipolar coupling for the
i-th datum, and the index i runs over all data in the cur-
rent window. In previous work (Andrec et al., 2001),
we have found that the scaled y? statistic

Z (Dcalc, i— Dobs, i)2
i

U= —— )

also known as a ‘Q-factor’ (Cornilescu et al., 1998),
more clearly reflects the goodness-of-fit of a peptide
structure and dipolar couplings than the simple 2 sta-
tistic when comparing between different data sets. For
any given data set, however, Q is proportional to 2,
and where appropriate we will use the two terms inter-
changeably. In addition, one can efficiently optimize
a protein structure with respect to internal coordinates
without an explicit representation of the dipolar cou-
pling PAS by minimizing a projected ¥ > obtained after
performing the linear fit of Dj; at each point in internal
coordinate space (Golub and Pereyra, 1973; Moltke
and Grzesiek, 1999).

A database consisting of 191696 18-residue pro-
tein fragments from the SCOP40 (Brenner et al., 1998)
was constructed. Data windows of length N,, = 4,
7,9, 11, and 18 residues (including dipolar couplings
for N-Hy, Ca-Ha, Ca-C, C-N, and C-Hy internuclear
vectors) from the ‘charged bicelle’ data of Ottiger &
Bax (Ottiger and Bax, 1998, Supporting Information
Table 2) were fit to the first N, residues of each frag-
ment in this database, and a xz value calculated. For
example, if a window size N, = 7 was chosen, then
the dipolar coupling data for residues 1-7 were fit to
the first 7 residues of database fragments 1, 2, ...,
191696 and the %2 value was calculated for each.
This was then repeated using the data for resides 2—
8, 3-9, etc. Database fragments derived from domains
having clear structural homology to ubiquitin with a
CE z-score (Shindyalov and Bourne, 1998) of greater
than 4.0 (including ubiquitin itself) were excluded. For
each window, the 15 fragments with the smallest xz
values were saved for further filtering.

This filtering was done by selecting a single opti-
mal fragment for each window within a given block
of Ny, windows k through k+Np — 1 such that the
sum of the RMSD’s for all overlapping regions from
neighboring windows is minimized. For example, for
the 20-window block of windows 1-20 with Ny, = 7,
we choose one fragment for each window from the 15
fragments selected above in such a way that the RMSD
of the last six residues of the fragment for window 1
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with the first six residues of the fragment for window
2 plus the RMSD of the last six residues of the frag-
ment for window 2 with the first six residues of the
fragment for window 3, etc. is minimized. Since the
total number of choices is 15Nv, a naive search of all
possible choices is clearly impossible for all but the
smallest values of Ny. However, due to the additive
nature of our overlap score and the tree structure of the
problem, it is usually necessary to examine only a very
small fraction of these 15Nt possibilities. To see this,
consider the selection procedure as a tree (Figure 1) in
which we begin with the empty set (level 0) and add
a fragment corresponding to each successive window
in the block until we reach the last window (level Nyp).
The nodes at level Ny, then represent all possible 15N
selections. For each node at level 2 or greater, it is pos-
sible to calculate a partial overlap score corresponding
to all of the fragments selected up to that point, e.g.
for the node at level 3 which is circled in Figure 1, the
partial overlap score would be the sum of the RMSD
of the last six residues of fragment 1 in window k with
the first six residues of fragment 1 in window k41 and
the RMSD of the last six residues of fragment 1 in
window k+1 with the first six residues of fragment 2
in window k4-2. Suppose that this partial overlap score
is greater than the best total overlap score found thus
far. Since the overlap score is additive and consists
of nonnegative terms, it is guaranteed that all nodes
which are decendents of this node will have an over-
lap score which is less optimal than the best selection
found thus far. Therefore, it is not necessary to expand
this node in searching the tree, thereby greatly reduc-
ing the computational burden. The technical details of
the algorithms used are given in the Appendix.

Once we have found the optimal choice of frag-
ment for each window, we construct a structural model
by performing rigid body superpositions of the se-
lected fragments. For each window i = k, k+1, ...,
k+Np — 2 we translate and rotate the fragment for
window i41 so as to minimize the Ca RMSD with
the fragment for window i over the Ny, — 1 residues
where they overlap (Kabsch, 1978). At this point, each
residue position will have atomic coordinates from up
to Ny fragments. We construct a consensus structure
by taking the arithmetic mean of the atomic coordi-
nates for each of the backbone atoms N, Ca, and C.
These mean Ca coordinates are used to assess how
close each block came to reproducing the ‘true’ ubiq-
uitin structure (taken to be the X-ray structure in PDB
accession code 1UBQ (Vijay-Kumar et al., 1987)) (Ta-
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Figure 1. The tree structure of the fragment selection problem. Each node at level L > 0 represents the selection of one of the 15 possible
fragments for the L-th window, and F[i, j] represents the fragment with the j-th smallest X2 in the database for the i-th window. There are 15L&
nodes at each level L (0 <L < Ny), for a total of (15Nb+1 —1)/14 nodes. The 15Nb nodes at level Ny, represent all possible fragment selections.

See Theory and methods and the Appendix for complete discussion.

ble 1), and the mean N, Ca, and C are used to calculate
backbone dihedral angles ¢ and .

It should be noted that up to this point we have
made no use of the ‘long range’ information inherent
in residual dipolar couplings. In order to re-introduce
this information, we further refine the backbone di-
hedral angles determined from the mean coordinates
by direct minimization of the projected ¥> (Golub
and Pereyra, 1973; Moltke and Grzesiek, 1999) as
a function of the ¢ and \{ angles for the entire pro-
tein using an ideal peptide geometry and peptide
bond torsion angle o fixed at 180°. This is done by
sequentially minimizing the projected y> as a func-
tion of (Vry, d2), (W2, d3), (U3, da), ... (U715, B76),
(W1, d2), ..., (W75, d76), €tc. using the simplex algo-
rithm (Nelder and Mead, 1965) until convergence is
reached. We have chosen to iteratively minimize over
the two-dimensional subspaces (i, ¢i+1) rather than
the individual angles because this allows for correlated

changes which can lead to rotations of the peptide
plane while keeping the Ca trace unchanged (Petico-
las and Kurtz, 1980) (so-called ‘crankshaft motion’
(Fadel et al., 1995) or ‘peptide plane rotation’ (Parker,
1999)). We expect that this will allow for more effi-
cient convergence. It should be emphasized, however,
that at no time do we constrain the minimization to
peptide plane rotations, but allow the minimization al-
gorithm to find the nearest local minimum in the entire

(Ui, diy1) plane.

Results and discussion

Database search

It is well known that dipolar couplings obtained us-
ing only one orienting medium may be insufficient to
uniquely determine a structure, because of the nature
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Table 1. Results of fragment selection for ubiquitin using Ny = 7

Window  Residues  D(Sgreedy)®  D(Soptimal)®  # nodes CPU time for RMSD of
block A) A) (efﬁciency)b fragment 1UBQ to mean
selection (min)  coordinates of
fragments® (A)
6.7 x 108
1-20 1-26 3.57 2.15 5 x 1014 4905.0 1.56
21-25 21-31 0.35 0.23 499 0.6 0.37
(6 x 10%)
4.4 % 109
26-35 2641 2.02 0.87 7 x 109 33.7 2.03
2.8 x 107
36-50 36-56 2.28 1.53 1 205.2 2.11
(6 x 1011
51-70 51-76 6.14 2.85 92 107 674.3 2.14
(3 x 1016)

aD(Soptimal) is the total overlap RMSD score for the optimal fragment selection. D(Sgreedy) is the initial upper
bound for the bounded tree search determined using a greedy algorithm (see Appendix).

YThe number of nodes in the fragment tree of Figure 1 visited during the determination of Sqp(imal using the
depth-first bounded tree search (see Appendix). The number in parentheses is the increase in efficiency over
naive exhaustive search (i.e. evaluation of all (lSNb"'l — 1)/14 nodes).

¢The RMSD of the Ca positions defined by the arithmetic mean of the Ca atoms of the superimposed fragments
(see Theory and methods) to the corresponding atoms of the crystal structure 1UBQ.

of the relationship between internuclear vector orien-
tation and the observed coupling (Ramirez and Bax,
1998; Al-Hashimi et al., 2000; Hus et al., 2001). This
can be seen quite prominently in Figure 2, where we
show the results of the database search for two dif-
ferent window positions using Ny, = 7. It is clear
that for window number 52 (Figure 2a) there are true
positives (green ellipse) which have a small ¥? (or
Q-factor) with respect to the dipolar couplings and
a small RMSD to the true ubiquitin structure, false
positives (red ellipse) which have a small x 2 with re-
spect to the dipolar couplings but a large RMSD to
the true ubiquitin structure, and false negatives (cyan
ellipse) which have a poor x? with respect to the
dipolar couplings but which nonetheless have a small
RMSD to the true ubiquitin structure. The effect of
the false positive hits can be quite deleterious, espe-
cially when the local structural information for a given
residue is binned together irrespectively of what frag-
ment it came from. In such a case, one will only see a
lack of clustering and the information will be deemed
ambiguous. The degree to which false positives con-
tribute to the low- 2 hits varies significantly, however.
For example, the low-x 2 hits for window number 55
(Figure 2b) consist only of true positives.

This variability in the number of false positives for
different data windows can be easily seen in Figure 3,
where we plot the RMSD to the true ubiquitin struc-

ture for each of the 15 smallest ¥ hits in each data
window. It is clear that for Ny, = 7 (Figure 3a), some
regions (e.g. windows 13—18, 31-39, and 47-63) have
many more false positives than others (e.g. windows
1-12 and 20-30). Some of this variability is easily ex-
plained. For example, windows 20-30 correspond to
the alpha-helical region of ubiquitin (residues 23-34).
Since helices are common and tend to have relatively
little structural variability, there will be many true pos-
itive fragments in the database, many of which will
have a small x 2 when fit with data derived from a heli-
cal structure. Some of the regions with a large number
of false positives correspond to regions in which there
is a large amount of missing data, such as windows
31-39, which overlap the very data-poor region of
residues 36-39. However, despite the false positives,
there is still a sufficient number of true positives for us
to expect to be able to construct a reasonably accurate
structure. In this respect, it is useful to compare the
best hits obtained via x 2 filtering with the best hit that
can be found in a fragment database based on struc-
tural similarity (RMSD) alone. The latter is indicated
in Figure 3 by the red line, and corresponds to the best
achievable fragment in SCOP90. Clearly, the best hits
based on the 2 filtering do not deviate too far from
this ideal result.

Intuitively, we expect that there is an optimal frag-
ment size Ny, since on the one hand it should be
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Figure 2. The results of the fragment database search for the seven-residue ubiquitin data windows 52 (a) and 55 (b), corresponding to residues
52-58, and 55-61, respectively. Each small circle represents one fragment in the database, and its position is given by the Q-factor for the fit
to the dipolar coupling data and that fragment’s Cao RMSD to the corresponding residues of the 1UBQ crystal structure. Only those fragments
with a Q-factor less than or equal to 0.2 are shown. The green ellipses denote fragments which are true positives, the cyan ellipses denote false
negative fragments, and the red ellipse denotes false positive fragments.
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Figure 3. A summary of the fragment database search results for all data windows in ubiquitin using a window size Ny = 7 (a) and Ny = 18
(b). The small circles represent (for each window) the 15 fragments in the database with the smallest Q-factor, and the ordinate is the fragment’s
Ca RMSD to the corresponding residues of the 1UBQ crystal structure. The solid and dashed horizontal lines represent the mean and the mean
minus one standard deviation of the Cae RMSD’s of randomly chosen pairs of Ny -residue fragments. The red lines represents the RMSD of the
fragment in a protein fragment database constructed using SCOP90 (Brenner et al., 1998) with the smallest RMSD to the corresponding residues
in IUBQ. Since the SCOP40-based fragment database is not a strict subset of the SCOP90-based fragment database, one can have fragments in
the former that have smaller RMSD’s to 1UBQ than the best fragment in the latter. The green lines represent the fragment selections with the
optimal overlap score (see Theory and methods) for the five window blocks 1-20, 21-25, 26-35, 36-50, and 51-70 (Table 1).
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easier to find a good match in the database when Ny,
is small, while the ability to filter out false positives
increases with increasing N,. The former is confirmed
by comparing Figures 3a and 3b for Ny, = 7 and
18, respectively. Since RMSD values increase with
the length of the fragment irrespective of structural
similarity, it is important to properly define the scale
with respect to which one makes comparisons. One
simple way in which this can be done is by comparing
an RMSD value to the distribution of RMSD values
for randomly selected pairs of protein fragments of
the same length. These distributions for fragments of
size 7 and 18 residues are summarized in Figure 3 by
the solid and dashed horizontal lines, which represent
the mean and the mean minus one standard deviation
of the distribution. Not only is the false positive rate
substantially greater for Ny, = 18, but the best hits
are also of poorer quality. This can be seen by not-
ing that the best hits for Ny, = 7 are approximately
2.5 standard deviations from the mean RMSD of ran-
domly selected pairs, while for Ny, = 18 there are
large regions (particularly windows 32-53) for which
the best hits are only 1.5 standard deviations from the
mean. Results for Ny, = 9 and 11 confirm this trend
(data not shown). Therefore, searching the database
with fragments of shorter length yields better hits than
with longer fragments, however, very short fragments
provide very little ‘resolving power’ to discriminate
false positives from true positives, as shown below.

Fragment selection

In our method, we select one hit for each window
which maximizes the overlap RMSD with the neigh-
boring windows, as described in the Theory and Meth-
ods section above. We show here that this procedure
does in fact greatly reduce the impact of the false
positives. In the case of Ny, = 7 (Figure 3a), we
performed the selection procedure independently for
the five non-overlapping blocks of windows 1-20, 21—
25, 26-35, 3650, and 51-70. The results for each
block is shown in Table 1, and the hits selected are
indicated by the green line in Figure 3. In general, the
selections made using the overlap RMSD criterion are
quite good, though usually not the best in terms of the
RMSD of the fragment to 1UBQ. The only substantial
deviation is in the area of windows 31-36, which could
be another consequence of the low data density for
residues 36-38 mentioned above. It should be noted
that previous approaches have also had problems in
this region of ubiquitin (Hus et al., 2001). The anal-

ogous results for Ny, = 18 (Figure 3b) show similar
difficulty in this region, but are in general substantially
worse due to the overall poorer hit quality and greater
false positive rate.

The amount of CPU time required to find the
optimal fragment selection was quite reasonable; fur-
thermore, these CPU times represent a very substantial
speedup (by up to 16 orders of magnitude) over a
naive exhaustive search. For example, for window
block 36-50 (N, = 15) an exhaustive search would
have required the examination of (15! — 1)/14 ~
5 x 10'7 nodes in the tree structure of Figure 1. By
using the bounded tree-search algorithm described in
the Appendix, only 3 x 107 nodes needed to be ex-
amined, and the algorithm reached level Ny only 12
times. Nonetheless, the CPU time still appears to scale
roughly as e?Nb, making block sizes greater than 20
prohibitively expensive. There are situations in which
the algorithm used here is very inefficient, especially
when there are many adjacent windows early in a
block all of whose fragments give very small overlap
RMSDs with each other. This can happen in the case
of alpha helices, for example. It can also be seen in
the unusually long running time for the first window
block (1-20) (Table 1). Such pathologies could be
identified by examining the distributions of structural
similarity of the fragments in each window and the
pairwise overlap RMSDs between neighboring win-
dows. Regions which will cause an inefficient search
can then be isolated within their own smaller blocks,
or redundant fragments can be removed after appro-
priate clustering. If necessary, alternative approaches
based on Monte Carlo or genetic/evolutionary algo-
rithms could be developed to deal with larger block
sizes and/or local inefficiency.

The local structure corresponding to each block
is generally quite good (Table 1). For example, the
selections for the block corresponding to windows 1—
20 (residues 1-26) gives a remarkably tight bundle
with a 1.6 A Ca RMSD to the corresponding region
of 1UBQ (Figure 4). The overall structure determined
using Ny, = 7 before refinement is topologically cor-
rect but of somewhat poorer quality than the fit in the
individual blocks: the RMSD of the mean Ca positions
to 1UBQ is 5.94 A. This is not surprising, however,
as absolutely no ‘long range’ information has been
used in the construction of this initial model. In fact,
our result is similar to that obtained previously with
a different algorithm which included database search-
ing with respect to chemical shifts as well as dipolar
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Figure 4. (a) The result of the superposition of the selected fragments for the window block 1-20 (residues 1-26) as described in Theory
and methods. The 20 fragments chosen are 1SLU:A(69-75), 1BTN(75-81), 1BTN(76-82), IBTN(77-83), 1TSS(35-41), 1AGQ:A(115-121),
1AGQ:A(116-122), 1DNP:A(67-73), 1DNP:A(68-74), 1RIE(84-90), 1RIE(85-91), IAGQ:A(44-50), 1AGQ:A(45-51), 1AGQ:A(46-52),
1ALO(15-21), 1ALO(16-22), 1ALO(17-23), IEXN:A(90-96), IEXN:A(91-97), and 1HVD(116-122), respectively. Each fragment is shown
in a different color. (b) The corresponding region of 1UBQ. The Ca RMSD between it and the mean Ca positions of the fragments shown in (a)
is 1.56 A (Table 1).
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Figure 5. Results of the refinement of the model constructed from the fragment selections shown in Table 1 as described in Theory and methods.
(a) shows the convergence monitoring in terms of decrease in dipolar coupling Xz (Q-factor). (b) Shows the RMSD of the refined structural
model relative to the 1UBQ crystal structure for the complete protein as well as the protein without the unstructured N- and C-terminal regions.

couplings (6.28 A)* (Delaglio et al., 2000, Supporting
Information Table 1). Construction of a regularized
structural model in internal coordinate (Ramachan-
dran ¢ /) space is not trivial, however. For example,
the 5.94 A for the RMSD of the mean Ca positions
increases to 6.77 A for a model constructed using ideal
peptide geometry, w = 180°, and ¢ and { angles de-

*Delagio et al. (2000) report backbone RMSD rather than Cua
RMSD. We find that the Cae RMSDs that we report are very sim-
ilar or identical to the backbone RMSDs for the same structures,
therefore the numbers are directly comparable.

termined from the mean Ca, C, and N positions. The
effect is even more dramatic when we constructed, as a
test, a model using the fragment in each window with
the smallest RMSD with respect to the corresponding
window of 1UBQ (i.e., the lowest circles in Figure 3a).
While the RMSD of the mean Ca positions to 1TUBQ
for the resulting structure is only 3.0 A, the full back-
bone internal coordinate representation is 6.0 A away
from 1UBQ. Although we have found that dihedral an-
gles determined using the mean Ca, C, and N positions
result in a better consensus of the ‘fragment bundle’
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Figure 6. Stereo diagram of the backbone traces of the Ca superposition of the structural model generated using the methodology described in
this paper (red) compared with the crystal structure (blue). The N- and C-termini are indicated.

than those obtained using other methods, such as the
median dihedral angle, the method used here is clearly
far from optimal.

The quality of the initial structural model varies
quite strongly with the window size used: the RMSDs
to 1UBQ for residues 1-76 for the structures deter-
mined in a similar manner with Ny, = 4, 7,9, 11, and
18 are 19.19, 6.77, 10.04, 14.32, and 14.73 A, respec-
tively. The poorer results for larger window sizes most
likely arise from the greater difficulty of finding good
database hits, while the poor result for Ny, = 4 can
be attributed to the lower information content of the 3
residue overlap as opposed to the 6 (or more) residue
overlap afforded by larger window sizes, which de-
grades both the filtering of false positives as well as the
construction of the overlap-based initial models (e.g.
Figure 4a). Therefore, it appears that the ideal window
size (at least for this example) is in the neighborhood
of 7 residues, and is in agreement with that used by
previous workers (Delaglio et al., 2000).

Refinement

In order to re-introduce long range dipolar coupling
information into the structure, the backbone torsion
angles were adjusted so as to minimize the overall >
as described in Theory and methods above using the
structure obtained from the Ny, = 7 fragment search
as a starting point. The convergence was monitored by
observing the decrease in the overall ¥ (Figure 5a),
and was achieved after approximately 2000 iterations,
or approximately 25 cycles through the entire protein.
The resulting decrease in RMSD relative to 1UBQ

is shown in Figure 5b: the overall RMSD decreased
from 6.77 to 2.69 10\, while the RMSD for the core
of the protein (neglecting the unstructured N and C
termini) decreased from 6.20 to 2.40 A. The resulting
final model is shown in Figure 6 along with the best-
fit superposition to the crystal structure 1UBQ. While
the final model does contain some mis-orientation of
secondary structural elements (e.g. the two N-terminal
B-sheets), it is still very good. The previous work of
Delaglio et al. (2000, Supporting Information Table 1)
obtained a slightly lower backbone RMSD of 1.65 A,
however it made use of additional data in the form of
chemical shifts. Not only is the backbone fold correct,
but the peptide planes and Ca-Cf bond vectors also
have the correct relative orientations. This can be seen
by comparing the RMSD of the final model to 1UBQ
using the Ca atoms only (2.69 A) and using the Ca
and CB atoms (2.78 A). Alternatively, one can per-
form a structural superposition of our model and the
1UBQ structure using Ca and CB atoms and calculate
the angle between the direction cosines correspond-
ing to the Ca-CB bond vectors for each residue. For
more than half of the non-glycine residues (53%), the
resulting angle is less than 15°, while 74% have an
angle of less than 23°. Our model is accurate enough to
identify the backbone fold (for purposes of structural
genomics), and to use as a starting structure for further
refinement using molecular modeling with or with-
out additional NMR data. The fact that the side-chain
Coa-CB directions are accurately defined raises the
possibility of constructing all-atom models using mod-
ern side-chain conformation prediction algorithms and
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molecular mechanics refinement (Xiang and Honig,
2001; M. Jacobs, personal communication).

Conclusions

We have shown that a protein fragment database
search approach using overlap RMSD as a filtering
tool is an efficient way of generating a backbone fold
from residual dipolar coupling data. Our approach is
similar in spirit to the earlier pioneering work of De-
laglio et al. (2000); it differs in the use of a fragment
filter based on the structural consistency between dif-
ferent windows rather than on consistency at the level
of a single residue (Delaglio et al., 2000) or single
peptide plane (Hus et al., 2001). Our filtering method-
ology is not specific to residual dipolar couplings, but
could be used to filter any collection of fragments gen-
erated based on chemical shift, amino acid sequence,
or other criteria. The necessary computer time is not
large by the standards of NMR structure determina-
tion, and the resulting structural model is of sufficient
quality to allow for backbone fold identification and
further refinement using molecular modeling.

There is a great deal of information contained in
the residual dipolar couplings, not all of which is used
by the methods described here, and the overall reliabil-
ity and robustness of our procedure could be improved
by incorporating this information. For example, we
used the dipolar couplings to assemble the list of can-
didate fragments at each window position, but this
information was not used at all in the fragment filter-
ing and the construction of the initial model. Clearly,
one could use the dipolar couplings to assist in this,
for example, by insisting on self-consistency between
the rotation matrix associated with the overlap RMSD
superposition and the PAS orientations derived from
the fits to the dipolar couplings. We are currently in-
vestigating these possibilities, as well as developing
methods for the further refinement of backbone and
all-atom structural models using molecular modeling
approaches.
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Appendix

In this Appendix we provide the technical details of
the algorithms used to select the optimal fragment in
each data window based on overlap RMSD. Let F[i,j]
denote the fragment with the j-th smallest ¥ > value for
data window i (i.e. residues i through i+N,, — 1). We
define the overlap RMSD OL(F[i, m], F[i+1, n]) to be
the Ca RMSD of the last Ny, — 1 residues of F[i, m]
with the first Ny, — 1 residues of F[i+1, n]. Consider a
block of Ny windows k through k+Np — 1. We define
a selection S to be Ny, fragments such that each S[i] (i
=k, k+1, ..., k+Np — 1) is one of F[i,j] § =1, 2,
..., 15), and the overlap score for the selection S to
be the sum of the individual overlap RMSDs for the
entire block:
k+Np—2
D(S)= ) OL(FIi, S[ill, Fli+1, S[i+1]]).
i=k

Given a block of fragments F[i, j] G = k, k+1, ...,
k+Ny, — 1) (G =1, 2, ..., 15), we wish to find the
selection S which minimizes D(S).

One can quickly obtain a reasonable (but in gen-
eral suboptimal) selection Sgreeqy using the following
greedy algorithm:

(1) Choose Sgreedy[k] and Sgreedy[k+4-1] such that

OL(F[k,Sgreedy[k]]’ Flk+1, Sgreedy[k+1]]) =
_min OL (F[k, i, F[k+1.j1)

j=L....15
(2) For each i = k+2,k+3, ..., k+Np — 1 choose
Sgreedy [l] such that

OL(F[i-1, Sgreedy [i-11, F[i, Sgreedy[i]]) =

j=III.l.%.n,15 OL(F[i—1, Sgreeayli-111, FIi, j1)
While this does not lead to the best selection in gen-
eral, the overlap score D(Sgreedy) is usually not too
much larger than the optimal overlap score (Table 1),
and it can be used as an initial upper bound in a
subsequent bounded tree search.

Consider the construction of a selection S in which
we begin with the empty set (level 0) and add a frag-
ment corresponding to each successive window in the
block until we reach the last window (level Ny). This
can be visualized as a tree structure as shown in Fig-
ure 1. For each node at level 2 or greater, it is possible
to calculate a partial overlap score corresponding to all
of the fragments selected up to that point, e.g., for the
node F[k+2, 2] at level 3 circled in Figure 1, the partial
overlap score would be the sum of the two overlaps



OL(F[k, 1], F[k+1, 1]) and OL(F[k+1, 1], F[k+2, 2]).
Suppose that this partial overlap score is greater than
the greedy overlap score D(Sgreedy). Since the overlap
score is additive and consists of nonnegative terms, it
is guaranteed that all nodes which are decendents of
this node will have an overlap score which is less op-
timal than the greedy selection, and therefore it is not
necessary to expand this node in searching the tree.
Furthermore, when searching the tree in a depth-first
manner (Smith, 1989), if the algorithm reaches level
Ny, with an overlap score less than the upper bound
(initially D(Sgreedy)), the upper bound can be set to this
new value. The overall algorithm can be summarized
as follows:

(1) Let bestscore = D(Sgreedy)-

(2) Traverse the tree in Figure 1 recursively in a depth-

first manner.

(2a) For each node at level > 2 calculate the partial
overlap score for that node.

(2b) If the partial overlap score > bestscore, ig-
nore all decendents of this node.

(2c) If level = Np and the overlap score <
bestscore, then output the selection correspond-
ing to this node and let bestscore = overlap
score.

(3) The final selection output is the optimal selection

Soptimal (ignoring ties).
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